CATALYTIC PHASE TRANSFER CARBONYLATION OF BENZYL HALIDES WITH IRON PENTACARBONYL.

Guy TANGUY, Berndt WEINBERGER and Hervé des ABBAYES^{*}
Laboratoire de Chimie des Organométalliques, Université de Rennes,
Campus de Beaulieu, 35042 Rennes Cedex (France).

SUMMARY

Benzyl halides are readily carbonylated to arylacetic acids in a two-phase system (aqueous sodium hydroxide (IM), tetrabutylammonium sulfate; organic phase ($\mathrm{CH_2Cl_2}$ or $\mathrm{C_6H_6}$ or $\mathrm{C_6H_5CH_3}$)), using a catalytic amount of the cheap, easy to handle iron pentacarbonyl under carbon monoxide atmosphere.

Transition metal carbonyl-induced carbonylation of organic halides (reaction (1)) is of considerable interest in synthesis 1:

$$RX \xrightarrow{M_X(CO)_y} RCO_2H$$
 (1)

Among the most successful metal carbonyl catalysts are dicobalt-octacarbonyl and nickel tetracarbonyl used in homogeneous ^{1,2} or liquid-liquid two-phase systems ^{3,4,5}.

Concerning iron pentacarbonyl, less expensive and easier to handle, several strategies have been designed 6,7,8,9 . All these methods suffer from the fact that they are stoichiometric with respect to iron pentacarbonyl, and operate under rather drastic conditions (a dry medium 6,8,9 ; or high concentrations of sodium hydroxide in a two phase system under nitrogen, giving only ketones RCOR instead of RCO $_{2}$ H 7 ; or prior and tedious synthesis of the tetra-

carbonyl ferrate diamion $Fe(CO)_4$ followed by the addition of the halide and further destructive oxidation⁸, giving only moderate yields of phenylacetic acid when benzyl halides are used⁹).

We have found that benzyl halides can be carbonylated to phenylacetic acids in good yields using a liquid-liquid phase transfer system in which iron pentacarbonyl is introduced in catalytic amounts under carbon monoxide atmosphere

RX
$$\xrightarrow{\text{organic phase, Fe(CO)}_5, CO}$$
 $\xrightarrow{\text{RCO}_2\text{H}}$ (2)

 $\xrightarrow{1}$ NaOH, $(\text{Bu}_4\text{N}^+)_2\text{SO}_4$ $\xrightarrow{2}$

Experimental conditions are very mild: moderate temperature, no need for an aprotic medium, low concentration of base (NaOH 1M), and, in several cases, one atmosphere of carbon monoxide. The following run is typical: into a two-phase system consisting of 10 mL aqueous sodium hydroxide (1M) and 10 mL of an organic solvent ($\rm CH_2Cl_2$ or benzene or toluene), are introduced, under carbon monoxide atmosphere: 0.5 mmol Bu $_4\rm N^+HSO_4^-$, 2.5 mmol of the halide. Then Fe(CO) $_5$ (0.25 mmol) is introduced with vigourous stirring (> 1200 r.p.m.). After several hours depending on the halide, the arylacetic acid 2 is extracted from the aqueous layer after acidification, and neutral by-products 3, 4, 5 and 6 are isolated and characterized (GC, $^1\rm H$ NMR, MS) from the organic layer.

Results given in Table I for a number of halides desserve several comments. First, the reaction is truly catalytic: in run 4, the $Fe(CO)_5/RX$ ratio is 1/50 and almost the same yields are obtained as in run 2 ($Fe(CO)_5/RX$ 1/10). The reaction is not limited to bromides but also works for chlorides (runs 6, 12, 13, 14). Run 5 shows that a two-phase system is required for a successful reaction: in a homogeneous medium (CH_3OH), the yield of phenylacetic acid is very poor (7%). Runs 3 and 15 make comparisons with a similar system under the same experimental conditions, but using the tetracarbonyl cobaltate anion instead of iron pentacarbonyl: it is shown that the iron carbonyl system is superior to the cobalt carbonyl one with respect to the carboxylation reaction. To conclude, we give a brief account of a possible catalytic cycle, which will be discussed in detail in a separate paper 10 . First, in this two phase system, even with the moderate concentration of sodium hydroxide used here

c	X2	Catalvtic	. Catalvst and	•	P	Reaction			Yields*		
,		medium	Catalyst /RX	T.C	Atm.	time (hours)	RCO ₂ H	RCO2R**	RCOR 4	RR 5	КН <u>6</u>
	C, H, CH, Br	H.0/C.H.	Fe(CO) - 1/10	20	1	15	75		7.7		,
	7 5 9	2 · · 6 · 6 · 6 · 6	2,2,2	2 6) (١ ٧) v	1
	:	"2°/ 5"25"2	Fe(CO) 1/20	20		20,0	5 03	٦ ٥	71 00	، م	
	=	Ξ	Fe(CO), 1/50	25	7 09	27	69	· «	11	ი 4	
	=	снзон	Fe(CO) ₅ 1/10	50	9		7***				
	C ₆ H ₅ CH ₂ C1	H ₂ 0/toluene	n :	20	09	29	19	2	4	7	
	mCH3CH4CH2Br	_Н ,0/сн ₂ с1 ₂	E	25		24	54	15	27	2	
	och3ch4ch2Br	1 2 1	=	25	-	24	69	18	7	10	
	mCNC ₆ H ₄ CH ₂ Br	Ξ	=	25	09	21	43***				
	pBrC ₆ H ₄ CH ₂ Br	=	=	25	П	24	20	22	6	7	
	8-Naphtyl-CH,Br	H ₂ 0/toluene	=	09	09	53	55				
12	mCH ₃ C ₆ H ₄ CH ₂ C1	: 1	=	09	09	47	31	6	8		
	00'p(CH ₃) ₃ -	=	2	09	09	26	37 ++	I	2		
	6 6 2 2 2 2 2 2	Ξ	-	50	09	51	35 +++				
15	C ₆ H ₅ CH ₂ Br	п20/сн2с12	NaCo(CO) ₄ 1/20	20	1	40	6	ε .	12	50	20

Table I

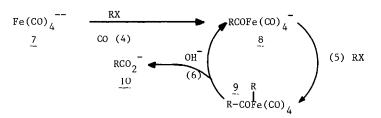
these esters $\frac{3}{2}$ come from a slow phase transfer reaction between the remaining halide and the carboxylate anion produced.

in % based on benzyl halide introduced.

^{***} the main product is C_{H5}CH₂OCH₃, resulting from the Williamson synthesis.

**** mCO_{HC}C_{H,}CH₂CO₂ to betained.

† 15 % of the hafide unreacted.


† 21 % of the halide unreacted.

†† 51 % of the halide unreacted.

(1 M), iron pentacarbonyl gives the tetracarbonyl ferrate dianion 7 (reaction (3)). This point has been firmly established in separate experiments 10 .

$$Fe(CO)_{5} \xrightarrow{OH^{-}} Fe(CO)_{4}^{--} + CO_{2} + H_{2}O$$
 (3)

Then, this anion quickly reacts with the benzyl halide according to the following cycle :

Reactions (4) and (5), occurring in the organic layer, have been demonstrated already under homogeneous conditions in the absence of a base 1 : they normally give ketone 4 through the decomposition of the unstable organometallic 9. Here, reaction (6), occurring at the liquid-liquid interface 12, is faster and gives the carboxylate anion 10, which is expelled in the aqueous phase.

REFERENCES and NOTES

- 1. Organic Syntheses via Metal Carbonyls. I. WENDER, P. PINO Edrs, John Wiley and Sons: Th A. WEIL, L. CASSAR, vol. 2 (1977) p. 517.
- 2. ibid. R.F. HECK, vol. 1 (1968) p. 373.
- 3. H. ALPER, H. des ABBAYES, J. Organometal. Chem., 1977 (134) C11.
- 4. L. CASSAR, M. FOA, J. Organometal. Chem., 1977 (134) C15.
- 5. M. FOA, L. CASSAR, Gazetta Chim. Ital., 1979 (109) 619.
- 6. M. YAMASHITA, K. MIZUSHIMA, Y. WATANABE, T. MITSUDO, Y. TAKEGAMI, Chemistry Letters, 1977, 1355.
- 7. Y. KIMURA, Y. TOMITA, S. NAKANISHI, Y. OTSUJI, Chemistry Letters, 1979, 321.
- 8. J.P. COLLMAN, Acc. Chem. Res., 1975, 342.
- 9. Y. WATANABE, K. TANIGUCHI, M. SUGA, T. MITSUDO, Y. TAKEGAMI, Bull. Chem. Soc. Jpn, 1979 (52) 1869.
- 10. H. des ABBAYES, B. WEINBERGER, G. TANGUY, to be published.
- 11. W.O. SIEGL, J.P. COLLMAN, J. Amer. Chem. Soc., 1972 (94) 2516.
- 12. Similar interfacial reaction was proposed in the liquid-liquid carbonylation system using the cobalt tetracarbonyl anion: H. des ABBAYES, A. BULOUP, Tetrahedron Lett., 1980 (21) 4343.

(Received in France 25 June 1983)